Ошибки выборкиСтраница 1
При выборочном наблюдении должна быть обеспечена случайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.
К собственно-случайной выборкеотносится отбор единиц из всей генеральной совокупности (без предварительного расчленения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного способа, например, с помощью таблицы случайных чисел. Случайный отбор — это отбор не беспорядочный. Принцип случайности предполагает, что на включение или исключение объекта из выборки не может повлиять какой-либо фактор, кроме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущенных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.
Доля выборки
есть отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:
Так, при 5%-ной выборке из партии деталей в 1000 ед. объём выборки п составляет 50 ед., а при 10%-ной выборке — 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате — выборочное наблюдение становится достаточно точным.
Собственно-случайный отбор «в чистом виде» применяется в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.
Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.
Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину количественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием изучаемого признака).
Выборочная доля
(w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:
w=m/n.
Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными (т =95), то выборочная доля
w=95/100=0,95 .
Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.
Ошибка выборки
ε или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик:
• для средней количественного признака
; (форм. 1)
• для доли (альтернативного признака)
; (форм. 2)
Социальная структура общества и ее типы
Проблема социальной структуры общества – одна из центральных в социологии. Не случайно в целом ряде изданных на Западе научных трудов и учебных пособий социологий определяется как наука о социальной структуре общества, социальных группах ...
Европейский Союз
1960
1999
Население
314800
372000
Рождаемость
5784
3999
Смертность
3386
3719
Естественный прирост
2398
280
Миграционный процесс
43
787
Общий прирост (убыль)
2441
1067 ...
Религия в социологической концепции М. Вебера
Степень рационализации, как показывает Вебер, обратно пропорциональна силе влияния магического элемента, который присутствует в каждой религии. Эта пара противоположностей (рациональное — магическое) является одним из главных инструментов ...
