SociologyBest

Основы социологии

Ошибки выборки
Страница 2

Ошибка выборки свойственна только выборочным наблюде­ниям. Чем больше значение этой ошибки, тем в большей степе­ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв­ляются случайными величинами, которые могут принимать раз­личные значения в зависимости от того, какие единицы сово­купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож­ных ошибок — среднюю ошибку выборки.

От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определя­ется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьи­рования изучаемого признака. Степень варьирования, как из­вестно, характеризуется дисперсией σ2 или w(1-w) — для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы­борки, и наоборот. При нулевой дисперсии (признак не варь­ирует) средняя ошибка выборки равна нулю, т. е. любая еди­ница генеральной совокупности будет совершенно точно ха­рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе­ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х ,p) неизвестны, и следовательно, не представляется возмож­ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

Ø При случайном повторном отборе

средние ошибки

теоретически рассчитывают по следующим формулам:

• для средней количественного признака

; (форм. 3)

• для доли (альтернативного признака)

; (форм. 4)

Поскольку практически дисперсия признака в генеральной совокупности σ2 точно неизвестна, на практике пользуются значением дисперсии S2, рассчитанным для выборочной сово­купности на основании закона больших чисел, согласно кото­рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене­ральной совокупности.

Таким образом, расчетные формулы среднейошиб­ки выборки

при случайном повторном отборе будут следующие:

• для средней количественного признака

; (форм. 5)

• для доли (альтернативного признака)

. (форм. 6)

Однако дисперсия выборочной совокупности не равна диспер­сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли­женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Страницы: 1 2 3 4 5


Предыстория появления и развития социологии в России
"XVIII столетие называют веком Просвещения. Именно в этот период начинают складываться основы социальной мысли в России. Социальная мысль России до XVIII века, как известно, находилась под влиянием религии. Поэтому все социальные про ...

Социология как наука (Объект, Предмет, Структура и функции)
Социология – наука об обществе. Это ее основной смысл выражает и термин «социология», образованный из латинского слова societas (общество) и греческого logos (учение). Объектом внимания социологии могут быть отдельные личности, их потреб ...

Приложения
Приложение 1 ПЕРЕЧЕНЬ ОБЛАСТНЫХ ЦЕЛЕВЫХ ПРОГРАММ, ФИНАНСИРУЕМЫХ ИЗ ОБЛАСТНОГО БЮДЖЕТА В 2009-2012 ГОДАХ (тыс.руб.) № пп Наименование областных целевых программ Всего в том числе 2009г. 2010г. 2011г. 2012г. ...